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by

Stamatis Cambanis* and (;ordon Simons**
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Abstract -

This paper introduces a mathematical framework within which a wide

variety of known and new inequalities can be viewed from a common

perspective. Probability and expectation inequalities of the following

types are considered: (a) P(Z A) r P(Z'EA) for some class of sets A,

(b) Ek(Z) - Ek(Z') for some class of functions k, and (c) E9(Z) i Ek(Z') for

some class of pairs of functions 2 and k.- It is shown, sometimes using

explicit constructions of Z and Z', that, in several cases, (a) <=> (b) <-> (c);

included here are cases of normal and elliptically contoured distributions.

A case wh~re (a) => (b) <=> (c) is studied and is expressed in terms of

"n-monotone" functions for (some of) which integral representations are

obtained. Also, necessary and sufficient conditions for (c) are given.

Key Words and Phrases: probability inequalities, expectation inequalities,

normal distribution, elliptically contoured

distributions, stochastic orderings, quasi-monotone

functions, n-monotone functions
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1. Introduction

'here is an extensive literature dealing with probability inequalities of

the form

P(ZcA) - P(Z'cA) , A c A , (1.1)

and expectation inequalities of the form

Ek(Z) Ek(Z') , k e F1 , (1.2)

where Z and Z' are random vectors (or more general random elements) with common

range space R, A is a class of (Borel) subsets of R, and F is a class of real

(measurable) functions on R. Here we also focus attention on expectation

inequalities of the form

Eq(Z) > Ek(Z') , (,k) c F2 , (1.3)

where F2 is a class of pairs of (measurable) functions on R. When the classes

A,FIF 2 are progressively richer then conditions (1.1),(1.2),(1.3) are

progressively stronger. Specifically if IA E F1, i.e. if 1 A r F1 for all A - A,

then (1.1) <- (1.2); and if F1 c {k: (k,k) e F2) =: F2 1 then (1.2) <- (1.3).

The more interesting conclusions are therefore those which lead from (1.1) to

(1.2) to (1.3).

The first question of interest is of course to describe conditions on the

distributions of Z and Z' which guarantee (1.1) for specific classes A of sets,

and there is a vast literature on this. The second question is, given a class

of sets A, to describe a class of functions F1, depending of course on A, for

which (1.1) > (1.2); if such a class F1 contains 
1A then in fact (1.1) < > (1.2).

The third question is, given a class of functions F1, to describe a class F2 of
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pairs of functions for which (1.2) => (1.3); and if furthermore F1 c F21

then (1.2) <=> (1.3). Clearly this equivalence holds for the class F,

defined by what may be called the "separation approach":

F2 = {( ,k): t -< m !5 k for some m E F(

and the expectations in (1.3) are defined} (1.4)

(This approach is most useful when there is a simple direct description of

F V one that does not predicate the existence of quantities with certain

properties.) When positive answers to the second and third questions are

feasible, one of the following relationships will follow:

i. (1.1) > (1.2) --> (1.3)

ii. (1.1) -:> (1.2) <:-> (1.3) (1.5)

iii. (1.1) <-> (1.2) <=> (1.3)

An interesting example of (1.S.iii) is described by Kemperman [5].

Suppose that R is a partially ordered space and that (1.1) holds for the class

A of all measurable increasing sets A (i.e. a e A and a _< b, in the sense of

the partial ordering, imply b E A). Then, by considering simple function

approximations, one obtains (1.1) <=> (1.2) where F1 is the class of all

measurable increasing functions k (in the sense of the partial ordering) for

which the expectations in (1.2) are defined. Using the separation approach one

also obtains (1.2) <> (1.3), where F2 is defined by (1.4) and has the

alternative direct description as the class of all pairs of functions (Z,k)

satisfying

k (x) <( y) , x <_y ,(1.6)
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and for which the expectations in (1.3) are defined, provided the "separating"

increasing function m defined for instance by

m(y) = sup{k(x),x-y}

is measurable, as is the case when R is the real line. (We infer from a

comment made by Kemperman [5] that measurability of m may fail even in j2.)

New examples of (1.5.iii) are described in Section 3 for bivariate random

variables with normal distributions (Theorem 3.1) and with certain elliptically

contoured distributions (Theorem 3.2).

An interesting example of (1.5.ii) is described in Section 2 when the

range of Z = (X,Y) and Z' = (X',Y') is the real plane. If A is the class of

all closed symmetric rectangles then (1.1) implies that

Eh(X 2+y2) Eh(X' 2+Y') (1.7)

for all nonincreasing, convex functions h on the positive half line; i.e.

(1.1) => (1.2) where F is the class of all functions k(x,y) of the form

h(x 2+y 2) with h as above. It should be pointed out that (1.1) no longer

implies (1.2) if h is either not nonincreasing or not convex; convexity would

be unnecessary if (1.1) implied that X2+ y2 is stochastically larger than

X,2 +y12, which is not true in general. In order to use the separation

approach, we note that functions f and g on the positive real line can be

separated by a convex function h,

f 5 h : g , (1.8)

if and only if

f[Xs + (1-X)t] : Xg(s) + (1-X)g(t) , s t , 0 5 X ! 1 , (1.9)



5

and then the convex separating function h can be defined (not necessarily

uniquely) by

h(u) = inffu g(s) ! g(t), < u t (1.10)t-s '-

Also, this choice of h, or some simple modification of it, is nonincreasing if

and only if

f(t) g(s) , s ! t (1.11)

Consequently (1.1) implies

Eg(X2 +Y 2 ) Ef(X' 2+Y' 2 ) (1.12)

for all functions f and g satisfying (1.9) and (1.11) and such that the

expectations in (1.12) are defined; i.e. (1.1) -> (1.2) <--> (1.3) where F2 is

the class of all pairs of functions Z(x,y)=g(x 2+y2),k(x,y)=f(x 2+y 2) where f and

g are described above. Again, in this case, the class F originally

introduced via the separation approach, has a direct description. Section 2

includes additional implications of the form (1.1) => (1.2), which are

described for n-dimensional vectors Z and Z' (n 2), and also integral

representations for certain "n-monotone" functions which may be of

independent interest.

Kemperman [5] also describes an alternative approach based on a theorem of

Strassen [10] which guarantees that when R is a partially ordered complete

separable metric space and A is the class of all measurable increasing sets,

then (1.1) is equivalent to the following:

There exist two random variables ZOZ; with the same marginal

distributions as Z,Z' and such that Z0 a Z a.s. (1.13)
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It is then immediate that (1.13) > (1.3) -> (1.2) > (1.1) where F,F 2 are

defined in the paragraph describing Kemperman's example, and thus

(1.13) <-:> (1.1) < > (1.2) < - (1.3). It turns out that this use of surrogate

random variables with certain specified a.s. properties (cf. (1.13)), the

"surrogate approach," provides a necessary and sufficient condition for

expectation inequalities of the type (1.3) in cases where no other approach

seems to work (including the separation approach) and even in cases where no

useful necessary and sufficient condition for (1.3) of the type (1.1) can be

found. We illustrate the usage of this surrogate approach in a case treated in

Section 3.

Let Z = (X,Y) and Z' = (X',Y') be two-dimensional random vectors and A the

2.class of all principal lower and upper ideals in P2, i.e. all rectangles of

the forms (--,x]x(--,y] and [x,c)x[y,-). Then (1.1) is equivalent to saying

that Z and Z' have common marginal distributions and that (1.1) holds for all

principal lower ideals (--,x]x(--,yj. It is shown in [2] and [12] that

(1.1) <-> (1.2) where F1 is the class of all quasi-nionotone functions k, i.e.

functions k which satisfy the inequalities

k(xlyl) + k(x2,Y2) k(xly 2) + k(x 2 yl) x1 5 x2 , Yl y2 , (1.

for which the expectations in (1.2) are defined and which satisfy some minor

regularity conditions. It is not completely clear how the quasi-monotonicity

condition (1.14) should be modified in order to derive inequalities of type

(1.3). The separation approach would yield (l.5.iii) with F2 defined by (1.4)

as the class of all pairs of functions Z,k which are separated by a

quasi-monotone function. It then follows that

Z(x + Z(x 2,Y 2 ) k(xly 2 ) + k(x2,Yl) , xl ! x2 , yl Y2 , (
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but we have been unable to find a direct description of the class F2 defined

through the separation approach. Condition (1.15) is necessary but not

sufficient for Z,k to be separated by a quasi-monotone function, as shown by an

example in Section 3. Another example shows that (1.1) does not imply (1.3)

for all functions k and Z satisfying (1.15) (and for which the expectations in

(1.3) are defined). One could conceivably require (Q,k) E F2 to satisfy

additional inequalities which are in the same spirit as (1.15). For instance,

if the additional inequalities

Z(xlY I) + £(x2,Y3 ) + £(y3,x2) k(xly 3 ) + k(x2,Y2) + k(x 3,yI) P

x <x,! y!y
1 2  x 3 ,3

do not hold, it is possible to construct examples where (1.1) holds but (1.3)

fails. But even these inequalities are insufficient and we have failed to

obtain usable conditions describing the class F2 by continuing with this

approach. An alternative approach is to assume that k and Z satisfy no more

than (1.15), i.e. to define F2 as the class of all pairs of functions k and k

which satisfy (1.15), and for which the expectations in (1.3) are defined, and

to impose additional assumptions on Z and Z', i.e. to strengthen condition

(1.1). This can be best achieved through a variation of the surrogate approach.

To this end consider the following condition:

(CO) There exists a four-dimensional random vector (XI,X 2,Y,Y2) whose

values are in the set F = {(x1,X2,Yl,y 2) = (x2-xl)(y 2-yI) 0 0}

and whose bivariate marginals FillF 12,F21,F2 for

(XI,Y ),(X,Y 2),(X2,Y I),(X 2,Y2) respectively satisfy

F 1 + F = 2H and F12 + F21 = 2H', where H and H' are the

distribution functions of Z and Z' respectively.

When (1.15) holds, condition (CO) implies



I(X ,Y , (X ,Y k(Xl,Y,) ,kY 2 ,\lJ :i.s. (1.>)

which, upon takin expectations (assuming; they are ,!c-filed), yields (1.3).

tlence (CO) ". (1.I ). It is shown in Section 3 that when Z and :' are

normally distributed with common means and varianccs then

4 " (CO) (1.1) (1.2) r- p1.3)

where p(o') denotes the correlation between the conm'onents of Z(Z'). In

Section 3, a similar result is obtained when - and -' have ellipticali>

contoured distributions; and also a generalization from two to higher

dimensions is described.

For the example of the preceding paragranh, as was mentioned, (1.1; does

not imply (1.3) in general. It is shown in Section 4 that

(CO) < > (1.1)' - (1.3), where A, is the class o, all pairs of Borel sets A

and A' in the plane which are such that the functions 1 and 1 satisfy 1.I
A At"

and

P(ZEA) t P(7't:A') , (.\,A') c A-, . '

Using a generalization of a theorem by Strassen [10] we obtain in Section 4

several further results of the type (CO) <=> (1.1)' <-7> (1.3), where (1.1)' is

stronger than (1.1). Among these the following is related to the inequalities

2
of Section 2 described earlier. When R = R , A is the class of all closed

symmetric rectangles; FI is the class of all functions k which satisfy

k(xl,Yl) !5 k(x2,Y2) , 5 xlj or y ,

FI IY21 :.. . . .,.
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and for which the expectations in (1.2) are defined; and F2 is the class of all

pairs of ftzictions V. and k which satisfy

V.(x2,y,) - k(xl,Y 1 ) , ix 2 1- - 1YX or Iy2 1 1 iy11

and for which the expectations in (1.3) are defined" it is shown in Section 4

that (1.1) < '> (1.2) <=> (1.3). It should be noted that the functions

k(xy) = f(x 2+y 2), with f nonincreasing and convex, considered in Section 2, do

not belong to the class F Finally Section 4 derives several new inequalities

of the type (1.1) and (1.3) for normal and elliptically contoured distributions.

2. n-monotone functions

In this section we develop inequalities for expectations of n-monotone

functions (to be defined below) of the squares of the moduli of n-dimensional

random vectors. We begin with the case n = 2 (Theorem 2.1) and then proceed to

the general case n _ 2 (Theorem 2.2). In the process of establishing

Theorem 2.2 we develop an integral representation for certain n-monotone

functions (Lemma 2.3) which may be of independent interest.

Theorem 2.1. Suppose Z = (X,Y) and Z' = (X',Y') are bivariate random vectlors

for which

P(IXJ-<a, IYIb) P(IX'I!a,[Y'Kfb) a 0 b 0 (2.1;

Then

Ef(X2+y 2 ) _ Ef(X' 2+Y' 2) (2.2)

for every nonincreasing convex function f on [0,-).

- -i 
J ± -

- ..... . . .. _ i gJv ,;' ~ - -r _ - V -'/[
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2
Proof. Condition (2.1) is equivalent to saying that aX' v bY'2 is

b2
stochastically larger than aX V by for a 0, h -0, where u v v denotes the

maximum of u and v. Thus for any bounded nonincreasing function h1 on 10,-,

Eh(aX 2vbY) > Eh(aX' 2vbY') , a 0 , b > 0 (2.3)

and, consequently,

h f,2 y,2
E hhX v -Y jsin 0 cos -dd-

O ' V sin2 2s 0 cos d f d.n o

(2.4)

2 2

Now with the substitution of (x2+y2)u for x v Y the integral

22f2 h-x v yo sin 0 cos e dO simplifies to
-0 c~ 2  sin 2 0

1 p' h((x 2+y 2)u) du"fl 2 du
U

Thus (2.2) holds for functions f of the form f(s) = s u. Btf 2
U

according to the lemma below, the class of such functions coincides with the

class of bounded nonincreasing convex functions. The unwanted restriction of

boundedness is easily removed by truncation: If f is any nonincreasing convex

function, then f v (-n) is a bounded nonincreasing convex function whose limit,

as n - -, is f. Then (2.2) follows by means of the monotone convergence

theorem.

Lemma 2.1. The class of bounded nonincreasing convex functions on [0,) and

the class of functions f of the form f(s) = fl 2 du, s 0, with h

U
nonincreasing and bounded on [0,-), coincide.

-77 .Zl



Proof. Suppose f(s) =f7o h(su) du, s 0, with h nonincreasing and bounded on

] [0,-x,). Quite obviously f is nonincreasing and hounded. To see that f is

convex, observe that f(s) =s f' ! )( dv for s >0 and f (0) =h (0) . Trhus for
s 2-

f(s)+ f(t) 2f s~ s J~i~v- dv + t 2__ 2 dv
V V

(s~t) h v) -h2

~tt -
2

t dv

4 =sf 2 d+ f 2 dvL0

V s+t v
2-

The argument when s =0 is similar. Consequently, f is convex on [0,c-).

Conversely, suppose f is a bounded nonincreasing convex function on [0,-').

Define a nonincreasing function h on [0,w~) as follows:

h(s) = f(s) - sf 0 (s) for s > 0,

= f(0) for s --

where f 0(s) denotes, for definiteness, the smallest slope among all tangent

lines to f at s. (Thus, when f is differentiable at s > 0, f 0(s) =f'(s).)

Then for fixed n ! 1 and s > 0,

1 1f (s(l+-j-))-f (s) f (s)-f sWl---))
f(s) -s s/n -- h (s) < f (s) s s/n______

due to the convexity of f. Thus

7 - ---L- -
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(n ~I hs (s)

(n+1)f(s) - nf(s(l+-)) h(s) _ nf(s(l--)) (n-1)f(s)
n n

But

1+
(n+l)f(su)-nf(su(l+ n)) d+ ffl2du =(n+l) fn f (su) du f f(s) as n o

2 1 u

since f is continuous at every point s > 0, and likewise

nf(su(l-1-)) - (n-l) f(su)

ffs)l du- f(s) as n c

* from which it follows that

f=l h(su) du s 0

From this integral it is easily checked that h is bounded.

There are unbounded nonincreasing convex functions f which cannot be

expressed in the above integral form, with h nonincreasing and necessarily

unbounded, e.g., f(s) = -s, s _ 0. An analogue of Lemma 2.1 can be established

for nonincreasing convex functions f defined on the open interval (0,-).

Boundedness is not essential on (0,1], but is on [1,a). See Lemma 2.3 below.

Likewise Theorem 2.1 can be modified to cover functions f defined on (0,-)

which are nonincreasing and convex. Such functions can be approximated from

below by functions of the type described in Theorem 2.1; and through use of the

monotone convergence theorem, we can obtain:

Corollary 2.1. If, in addition to (2.1), P(Z=(0,0)) = 0, then (P(Z'=(0,O)) 0

and) (2.2) holds for each nonincreasina convex function f on (0,-) for which

the expectations contained therein exist.

io W"0
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It is apparent from the nature of assumption (2.1), appearing in Theorem

2.1, that inequality (2.2) can be extended to

E xX2 + Y2 E xX12 + !12
Ef(aX2+.-Y 2) Ef(aX' 2+Y')

There are, of course, many nonincreasing convex functions f to which

Theorem 2.1 or its corollary is applicable. As an example the assumptions of

Oa 2 0 2 a 2 2,whr
Theorem 2.1 imply ER

a < ER 'a , 0 < 2, where R = X + Y and = +

while the assumptions of Corollary 2.1 permit the conclusion ERa I ER' x, " < 0.

The value of Theorem 2.1 and its corollary depends, of course, upon the

reasonableness of assumption (2.1), an inequality of type (1.1). Theorem 2.1

of )as Gupta et al. [3] states easily checked conditions under which this

inequality holds for pairs of related elliptically contoured distributions,

as well as conditions under which assumption (2.7) holds in Theorem 2.2 below

and in its corollary.

The requirements in Theorem 2.1 that f be nonincreasing and convex are

both necessary for the generality of the theorem: If f is any function on

[0,-) which satisfies (2.2) whenever (2.1) holds inc? the exp)ectations make

sense, then f must be nonincreasing and convex.

Proof. The need for f to be nonincreasing can be seen by considering

nonstochastic Z and Z' of the form (x,O) and (x',0), 0 , x ! x' -",. Now

suppose f is nonincreasing and satisfies (2.2) for all Z = (X,Y) and

Z' = (X',Y') satisfying (2.1). For s > 0 and p c (0,I], let Z' s 2 V

and Z = s V where V is uniformly distributed on the unit circle. Since

Z and Z' are elliptically contoured vectors which satisfy (2.1) (cf. Theorem 2.1

of [3]), inequality (2.2) holds, which translates into

f(s) ! 7- 1I (1-u 2) f(s[l+up])du , s > 0 , E (0,1] (2.5)-I -
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Replacing s by s - 1/ni and letting n -~yields

f (s-) - TIfI(1-u 2 f(s[l+upj)du , s >0 , r (0,11

which, in turn, due to the monotonicity of f, yields

f(s-) 7T- f0 (lu2)-2 1~-Qd 2 4 - 2  f (s+) du -. f(s-s )) + 1fs)

-1

for s > 0 and r)E (0,11. Letting p 4. 0, we obtain f(s+) >_ f(s-), s >0, which

establishes the continuity of f on (0,o-).

Now suppose f is not convex so that for some 0 <a < b, we have f(a) > f(b)

f and

f(a) + f(b) < 2f~a+bl (2.6)

Consider lines t = ms + c, a :! s b, of negative slope m = (f(b)-f(a))/(b-a).

For large values of c, the line t =ms +' c > f(s) over the entire interval

[a,b]. Let c decrease until the line first touches the graph of f at some

point in the interval [a,b], and let s~ be the smallest such point of contact

with this line. (Since f is continuous on (0)00), both c and s 0 are well-defined.)

Due to (2.6), s is in the open interval (a,b). Setting s = s 0 and

P = (Y3.. A so that 0 ! p 1 and a !5 s(l+uo) 5 b for -1 e- u s 1, we

obtain from inequality (2.5):

f(s 0  T fl (1-u2)- f(s 0 [l+uo])du 57_1fl (1-u 2 (ms 0[l+up]+c)du

=ms 0 + c =f(s 0 )

This can only happen if

f(s0)[1.up]) =ms 0 (14.up) + c , l u : 1



which is impossible (for negative u) due to the way s is defined. Thus f must

be convex.

2 2
We remark that the random variables R and R', associated with the random

vectors Z = s P and Z' = s"V (used in this proof), are not stochastically
Vp 13 l

ordered since ER2 = ER' 2  s. Thus condition (2.1) can hold without R2 being

2
stochastically smaller than R'. It follows, of course, that condition (2.1)

can hold without (2.2) holding for every nonincreasing function f.

Finally it should be pointed out that the argument used in establishing

Theorem 2.1 shows that inequality (1.2) holds for all functions k of the form

k(x,y) = F0 Lt-os 6 sin 

where F (r) is jointly measurable in (6,r) and nonincreasing in r for each

fixed 03, p is a measure on the open interval (0, ), and the indicated integral

exists and is finite. By choosing for instance F 0(r) = h(r)g(a) with h bounded

and nonincreasing and g bounded and 0 (e.g. g(0) = (sin 0)n (cos 0) m) and l

Lebesgue measure, we can generate a large class of symmetric as well as

nonsymmetric functions k(x,y). The choice g(O) = sin cos e gives Theorem 2.1

for bounded nonincreasing convex functions of x 2+y2 ; k(x,y) = f(x 2+y2 ).

Theorem 2.1 can be generalized to higher dimensional vectors, and this is

done in Theorem 2.2 where the following terminology is used. For 2 n < -, a

function f defined on [0,-) or (0,-) is said to be n-monotone if its kth order

divided differences are of alternating signs for I k < n, of nonpositive sign

for odd k and of nonnegative sign for even k. (Thus [x0,x1 ;f], defined by

(f(x )-f(xl))/(x0-x1), is nonpositive for distinct x0 and x1 in the domain of

f; [xoxlx 2 ;f], defined by ([Xo,xl;f]-[xlx2;f])/(xo-x 2), is nonnegative for

distinct x0, x1 and x2; etc.) It follows from Theorem A, page 238, of Roberts

i
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and Varberg [7] that f is n-monotone iff (i) it is nonincreasing on its domain,

(ii) it is (n-2)-times continuously differentijabILc o (0 ),. with

(-1) kf (s) 0 , s 0 , , I. -

and (iii) (-l)n-2f (n- 2 ) is nonincreasing and convex on (0,,-). For future

reference, we note that (iii) is equivalent to: (iii') (-l)n-2f(n-2 ) is

locally absolutely continuous with a nonpositive and nondecreasing

(Radon-Nikodym) derivative (_)n-2 f(n
-l). A function f defined on [0,,-) or

(0,- ) is said to be -,-monotone if it is n-monotone for all n, i.e., if f is

nonincreasing on its domain, and f is infinitely differentiable on (0,,) with

(-1)k f k(s) 0, s > 0, k 1. In Lemma 2.3 an integral representation is

obtained for all bounded n-monotone functions defined on [0,c), 2 s n . A

well-known related notion is that of complete monotonicity. A function f

defined on [0,-) or (0,c) is called completely monotone if it is continuous

on its domain, and it is infinitely differentiable on (0,-) with

(-1)kf(k)(s) 0, s > 0, k 0. Thus a completely monotone function is

0o-monotone, and if f is 0-monotone on [0,-) or (0,-), then -f(l) is completely

monotone on (0,00). Completely monotone functions on [0,-) are Laplace

transforms of finite measures on [0,c), and completely monotone functions on

(0,-) are Laplace transforms of (not necessarily finite) measures on [0,-)

for which the Laplace transform is finite on (0,-). (See Widder [13].)

Theorem 2.2. If the random vectors Z = (Z1i .... Zn) and Z' = (Z{....,Zn), n 2,

satisfy

P(l1,15a I  [' Zn 1!5a n )  K P I Zll !5al,, . , Zn' 5a n)  a Ia -_'0,. . a n  >_0(2

... I 
.. , 2
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In. 7" f' an 'I n-mon,)tone fzunct-on o)P 1O,), tN":

Ef z I 7 . (2.8)

Remarks. 1. Theorem 2.2 can be viewed as an extension to higher dimensions of

a well-known result in one dimension, provided one interprets a 1-monotone

function as a nonincreasing function.

2. Some examples of --monotone functions on [0,o), to which

Theorem 2.2 is applicable are: e-as (a > 0), -sX (0 < -X- 1),

(s+a) (x, 0, a -- 0), -log(s+a) (a ' 0).

3. An example of an n-monotone function which is not (n+l)-monotone

is the function f defined by f(s) = ((1-s)vO) n  s-  (n 2

Before we prove Theorem 2.2, we must gather together a number of facts,

some of which we state in the form of lemmas.

Lemma 2.2. if h is a bounded function and the randor vector (V , .. ,V n), n -,

is uniformy distributed on the surface of the n- i*encionaZ unit sphere, ;.

Eh T ... v IV1 .. .Vni n/2 f (u-)n h(r 2 u)du (2.9)
V rn (n-2)! u

2 2 2

for every real vector (x1 .... Xn) where r2 = x1 *...* X.

Proof. For n = 2, (2.9) is established in the proof of Theorem 2.1. We now

assume (2.9) is true when n in (2.9) is replaced by n-l, and proceed to

establish its validity for n (n > 3). Using the facts that V has density
n



(n) n-3

f(v) 12 l j~i; _ 1- --- I v

that, conditioned on V n= v, (1-V 2 )-,. (V1 ,...,v Vn-i is uniformly (listi'ihtd on

the (n-l)-dimensional unit sphere (see for instance Lemma 3 in (1)), and

therefore that (by the induction hypothesis) the conditional expectation of
(22
l x nI
h V.. V.v.. V nI given V n vi

n-n-

v(1-v 2 2 rm (u-1) h "n V d

TT (n-3)!

we obtain (after some minor simplifications)

2' 2n x. n n x. n

Eh V -- I IV lv fl E h v 1]fl1vil V V f (v)dv

(2.10)

(un-3

IT n/2(n_3 )1 ri (u-1 0 ~ h 1~v dvdu

u(r-x)2 x2

With the change of variable v -~ 2: 'V-! = r 2Y, the inner integral in
1-v 2 v2

(2.10) simplifies to

n-1 h X2 { r 2 (r-x)n-r ~ ) n n r2 - - dy
r u(r2_2)+2

2
r

and (2.10) becomes
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r y-x n

2 2 2'i!21 -2(n-l I ; h(r f n (u_-1)n- x n (r y -x n )  2 -

--- r l _-' n ]- + (r -xn) dudy
nYn

rT- (n-3) !

The inner integral equals

r x2'n-2 
(l - -(ry-x n

2 x 1 , 2 2n-I -1
n n )

1 2(n-1) n- 2
n-2 r (y-l) -

and thus (2.10) becomes

, (Y-1 ) h(r2y)dy
7Tn/2 (n-2) ! l y n

By using the same argument used in proving Theorem 2.1, together with

Lemma 2.2, one can readily establish (2.8) for functions f defined on [0,,) of

the form

I n-2
f(s) h(us)du s _ 0 (2.11)

u

where h is bounded and nonincreasing. The class of such functions is

characterized in Lemma 2.3, which follows.

Lemma 2.3. The class Fn of functions f described b, (2. 11), with h any bundJ

and nonincreasing function on [0,-), coincides with the class of hounded

n-monotone functions on [0,-o). The class F' of functions f of the forr':
n

!,
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n-2

(s) (-s) h(v)dv 0(2.12
V

*h aUn, u~al:n 'Hn)! Popn (0, n' tu ,)'' H 1,r.H /

of r s : u r 1 (n

Rem;irk. An immediate consequence of this lemma is that the classes F and F'
n n

are nonincreasing in n. If f c Fn (WFn ) for every n, then f-f(o-) is a

completely monotone function on [0,-) (on (0,-)), and, therefore, f must be of

the form

f(s) = c + eS dji(u) , s : (s - 0)

where c is any real number and ij is a finite measure on [0,-) (Ii is a measure

on [0,-) for which the integral is finite for all s > 0).

Proof. We shall prove the characterization of F'. Since the right-hand side~n

of (2.12) is equal to the integral in (2.11) when s - 0, the stated

characterization of F is easily inferred from that for F.
n n

Suppose f E Fl. It is clear from (2.11) that f is bounded on [1,,), aid
n

from (2.12) that f is (n-2)-times continuously differentiable on (0,,) with

ki(n-2)! ,c (sn-k-2

f(k)(s) = (-) k (n-2)1 (V-s) [kv - (n-1)s]h(v)dv
v (2. 13)

s > 0 1 s k 5 n -

Also f(n-2) is locally absolutely continuous with a (Radon-Nikodym) derivative

f(n 1)()no h(v) dv + (-I) n - I  (n-2)! s s (n-l) h(s) a.e. on (0,
s n

V

A,-

- -w-
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which, after integrating by parts, simplifies to the version we will use:

f(n-1)(s) (-1) n (n-2)! v v_(n-l) dh(v), s > 0 (2.14)
S

Clearly f(n-1)() (=lim f(n-1)(s)) exists and equals zero. In fact,
S-Ko

sk-l f(k)(s) - 0 as s I , 1 < k ! n - 1 (2.15)

This is obvious from (2.14) for k = n - 1 and from (2.13) for 1 k s n - 2.

Observe that (-1)n-If(n
-1) is nonincreasing. Since h is nonincreasing, it

follows by (2.14) that (-1 )n-1f(
n -1) is nonnegative. Proceeding by backwards

induction: From the nonnegativity of (-1)n-lf(n
-l), we infer that (1)n-2f (n-2)

is nonincreasing. Since f(n-2)(,) 0 (implied by (2.15)), (-)n-2f(n-2) is

nonnegative, etc. Thus (-1 )Jf(J) is nonnegative for j = 1,...,n-1, and

(-1)n-1f (n - l) is nonincreasing, which together say that f is n-monotone.

Conversely, suppose f is n-monotone on (0,-) and bounded on [1,c). Define

h on (0,) by

n-i k
h(v) = (n-l) X (-1) vkf(k)(v) v > 0 (2.16)

k=O

which is nonincreasing because each term in the sum is nonincreasing (a

consequence of f being n-monotone). Observe that h is of bounded local

variations and

(-1) n -1 n-1 (n1)
dh(v) = (-) v df(n -  (v) , (2.17)

(n-2)!I

i.e.,

__
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h(v) - h(s) = f v un-) I df(n-1 ) (u) 0 < s < v < . (2.18)(n-2) ! s'-

Then for s > 0 (using (2.18)),

n-2 (n)n-n)
rhv)h (vsn uV~~ df ()u)dv

S v n n2! s vn

n-I

p_)- .{ '- I - (u-S) n-l df(n-1)(u)EF (S
(n-l)! s n-i

say, where we have applied Fubini's theorem for nonnegative functions (without

knowing, as yet, that Fnl(s) is finite). In what follows, we shall need to

use (2.15), which should be justified in the present context. This is done in

Lemma 2.4 below for the kt h derivative of an arbitrary n-monotone function,

2 !5 k < n - 1. The remainder of (2.15), for k = 1, is valid in the present

context since, by assumption, f is bounded on [1,o).

Now, using integration by parts and (2.15) for k = n - 1, we obtain

Fn(S) - ( )n -1) n-lf(n-l) S F (s)
s (n-l)! + n-2

where

F () i_)n - 2  fun- US) n -2}f(n-1) dFn- 2 (s) -- (n2 {u s - (u-s)n - 2}f ll(u)du.

n-2 ~(n-2)1 r

Proceeding by backwards induction, we are eventually led to

('-s) n 2 (h(v)-h(s))dv = f(s) -n (_)k (k) (S)

s v k=O

- "t°..- -- -". - . . A ,m - ' -... . .. .. .. .. I, ' ' ° \ .. r - : : ., . .... , . , , ,. i. .' . . =. : :
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which, in view of (2.16), establishes (2.12). The boundedness of h on[1)

may be inferred from (2.12).

If f is n-monotone on [0,-) or (0,-), then (-I%) is nonnegative and

nonincreasing on (0,co) for k = 1,...,n-1, and, hence,

0 ss(-l) kf(k) (S) 5 f' (-I) kf(k) (u)du
s/2

<2j(- 1) kf(k-1) (S) - (-l) kf(k-l) (s/2)1I s > 0 1 !5 k n-

These inequalities permit us to describe the behavior of the derivatives of f

as s -~cand s 4- 0:

Lemma 2.4. If f is n-monotone on 10- or (0,-) for some n 3, then,

s klf (S) -~ 0 as s -- , 2 kcn-1.(2.20)

Proof. This follows by induction from (2.19), provided (corresponding to

k - I=1)

f()S)- f~i)(s/2) -~ 0

But this is the case since f(l) is nonpositive and nondecreasing.

Lemma 2.5. If f is f-monotone on [0,-), or n-nonotone on (0,-) with f(0+)

finite, for some n 2! 2, then

skf () -~ 0 as s 4 0 , 1<kn-1.(2.21)

Proof. In either case, f(0+) exists and is finite. Thus f(s) -f(s/2) 0 as

s 4-0, and (2.21) follows from (2.19) by induction.



24

Proof of Theorem 2.2. In view of the remark preceding Lemma 2.3, we may take

(2.8) to be established for all bounded n-monotone functions f on [0,- ). The

proof for unbounded f requires the removal from f of its (possible) linear part

and then a truncation argument.

Suppose first that f(s) = -cs, s ? 0, where c > 0. Inequality (2.8) can

be expressed as

n ? n 2
EZ7 <_ EZ

l i 1

2
which must hold since (2.7) implies Z. is stochastically smaller than 7,

il n

Now suppose f is any unbounded n-monotone function on [0,o), i.e. f(-,-)

Since f(1) is nonpositive and nondecreasing, the finite nonpositive limit

f(1 )(-) exists. We shall assume, without loss of generality, that f(l)(,_) o 0.

For otherwise, we may express f as the sum of two n-monotone functions,

f = fl + f2 where fl(1 5 ( ) = 0 and f2(s) = f(l)(-) . s, s _ 0, and treat the

parts independently. We shall truncate f as follows: Define h on ( h,) by

(2.16) and h(O) = (n-l)f(O). For x > 0, let h (v) = h(vAx), V > 0, and defincX

f by (see (2.11))x

n- 2

f x(s) = n (u- h(us)du , s .0 (2.22)
U

Since h is nonincreasing on (0,-) (see (2.17)) and

h(O+) = (n-1)f(O+) !- (n-1)f(O) = h(0) (cf. Lemma 2.5), it follows that h is

nonincreasing on [0,-) and, consequently, hx is a bounded nonincreasing

function on [0,-) for every x > 0. This implies that (2.8) holds for each

* ~'g, t.,



function fX and it only remains to show, if possible, that f x f as x -~(so

that (2.8) follows for f itself by the monotone convergence theorem). Since' 11

is nonincreasing in x, so is f x(apparent from (2."?)), and thus it is only

necessary to show the pointwise convergence of f Xto f.

Prom (2.22) we have f (0) = (n-l)h(0) =f(0) for all x > 0. Thus we nay
x

focus our attention exclusively on points s >0. For such points, it is more

convenient to use the following variant of (2.22) (see (2.12)):

f(S) = s rfvCS)n- h (v)dv , s > 0

For x > s > 0, we have (using (2.18))

fx (V-S) n- 
(v-Sr n-

f X(S) S s (vs n- 2 h(v) dv + ~ s - n dv -h(x)

V v

S x(V-s) n- f(_)n-l -v un-l d (n-1) ()d
s n t(n-2)! fsU df (jd

+ (x) {l - ( -I + h(s) '1 s n

_______ --1)n- -

(-l) n-I u n1 {1~ -. - -iJ df (n-(u)

h(x) {s2l~nl

(_In-Ix u-s) n-l df (n-l)) + h(x)
(n-l)! su n-I

By repeatedly integrating by parts (much as in the proof of Lemma 2.3), we

obtain
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f ~ ~ -n -1) (k) (X xk (- kx>S>
f (s) f f(s) + k f x{ 1xs 0

X k=l

Since, as x f, (1) (X) -+f ()=0 (assumed without loss of generality),

I it follows from Lemma 2.4 that the sum converges to zero as x ~ .Thus

f (s) -~ f(s) as x -+cwhich completes the proof.
x

Theorem 2.2 can be extended to n-monotone functions on (0,co), to allow for

functions which are unbounded at zero as well as at infinity.

Corollary 2.2.. If, in addition to (2.7), P(Z1=0,...,Zn= 0) =0., then

(P(Z'=09 . . .,Z'=0) = 0 and) (2.8) holds for each n-monotone function f on

(0,.-) for which the expectations in (2.8) are defined.

Proof. Let f be n-monotone on (0,c-) with f(0+) = and f(-~) =-. (Functions

f with smaller ranges can be handled similarly or more easily.) Let s~ be the
0

zero of f, f(s)= 0, and for each k > (2/s ) define f (s+= -), s 0.

Then each fkis n-monotone on [0,co), and by Theorem 2.2, Ef 2) Ef k~

Also as k t-fc, f t f on (0,co). More precisely, f+ t f+ and by monotone
k k

convergence Ef+(IIjZH 2) + Ef+(IIZI 12) Also for s :s~ since 0< -f (I,"

we have

S+

and thus 0 5 ~s -C(s) 5 -1f I(O, s 0.~ It follows that Ef-(I zI 12)
2 S 2 k

and Ef-(IIZII 2 are finite or infinite together and thus Ef k(11Z1l 2 Ef (lIZli 2

'-1, AA
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(by dominated convergence if they are finite or trivially if they are infinite).

Since Ef(IIZI 2 ) is defined by Ef+(IIZI 2)-Ef-(IZF 2 ) iff at least one of the

two terms if finite, (2.8) follows.

Some examples of an --monotone function, to which Corollary 2.2 is

applicable, are: s (% < 0), -log s.

We have already shown that the 2-monotone functions provide the appropriate

class for the result of Theorem 2.1. The following example shows that

3-monotone functions provide the appropriate class for the result of

Theorem 2.2 for n = 3 (by constructing, for a 2-monotone function which is not

3-monotone, 3-dimensional random vectors Z and Z' which satisfy (2.7) and for

which (2.8) fails), and we anticipate that similar examples would show the same

for n > 3.

Example. Suppose f is 2-monotone but not 3-monotone on [0,-). Then for some

a and b, a e 0, b > 0, one has

f(a+3b) - 3f(a+2b) + 3f(a+b) - f(a) > 0 . (2.23)

(Implicitly we are saying that functions f which are 2-monotone and satisfy the

converse of (2.23) for all a and b are 3-monotone, which can be verified.) Let

2 2 23 a = a and 2a + a + b be used to define a and (0 a < 9), and let

and Z' be three-dimensional random vectors whose distributions are described by'

the following table:

.. . . ...... ' . ... .. .. , . -- .. . . - -
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z P(Z=z) P(Z'-z) P(Z z) PZ' z)

Ia 9 11 9,88-Tg 81

4 6 is is

4 6 15 is

4 6 is is(1,c, 00) 89- -- 89- --

8 6 27 27

8 6 27 27

8 6 27 27

34 36

From the last two columns it is apparent that condition (2.7) holds. Now for

R 2 ZZt and R'2  Z wehaveR =Z =_ ehv

2 1 12 24 34

Ef(R 2) = 1 f(a) + 12 f(a+b) + 24 f(a+2b) + 4 f(a+3b)

2 9 18 18 36

Ef(R' 2) = f(a) + 18 f(a+b) + L f(a+2b) + W- f(a+3b)

From (2.23) it follows that Ef(R' 2) > Ef(R 2). Consequently, the assumption of

3-monotonicity in Theorem 2.2 when Z and Z' are three-dimensional is essential;

it is impossible to consider a larger class of functions.

3. Expectation inequalities for pairs of functions

In this section we consider random vectors Z and Z' (i.e. R = pfn) which

satisfy (1.1) with A the class of all principal lower and upper ideals (.--,z]
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and [z,-), z e . When n = 1, (1.1) says that Z and Z' have the same

distribution, which is not interesting. When n = 2, (1.1) says that Z and Z'

have the same marginal distributions and that their iivariate distribution

functions H and H' satisfy H H'. Our attention will be focused on the

bivariate case, and only at the end of the section will we consider a higher

dimensional case.

It is shown in [2, 12] that (1.1) <=> (1.2) with F the class of all

quasi-monotone functions (cf. (1.14)) for which the expectations in (1.2) are

defined and which satisfy certain minor regularity conditions. (See

Theorem 1 in [2].) The separation approach yields (l.5.iii) with F2 defined by

(1.4) as the class of all pairs of functions 9,k which can be separated by a

quasi-monotone function m: X=m+f,k=m-g where f and g are nonnegative. (Large

classes of quasi-monotone functions are known or can be constructed; see for

instance [2].) When R and k are separated by a quasi-monotone function then

they satisfy (1.15) (cf. (1.4) and (1.14)). However (1.15) is not sufficient

for Z and k to be separated by a quasi-monotone function: there exist

functions Z and k satisfying (1.15) which are sufficiently close that no

quasi-monotone function can exist between them. This is easily demonstrated

with the aid of Figure I.

In Figure I, relevant values of k and Z are indicated at various points

within an array of eight points possessing a particular geometric orientation

in the plane. In order to obtain a contradiction, it is assumed that a

quasi-monotone function m satisfying Z m k does exist. Figure I indicates

two points in the array where it is impossible to define m simultaneously. In

order to insure that (1.15) is satisfied, it is sufficient to define k as -10,

say, and Z as 10 at all points in the plane for which an explicit definition i.

not given in Figure I.
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(k=O) o ...... (Z=0)

--- -- -- -- -- --- -- -- --l)=O

FIGURE I

By referring to the four points in the lower left-hand corner of Figure I, one

can easily deduce from Z. m ? k and the quasi-monotonicity of m that the

inequality at + 1 must hold. In the same way, one can obtain the

contradicting inequalities a !1 and I by examining the four points in the

lower right- and upper left-hand corners of Figure I, respectively. Thus no

quasi-monotone function m exists which satisfies Z _7 m _: k. This example

suggests the possibility that (1.1) can hold without (1.3) holding for all

functions k and Z, which satisfy (1.15) (and for which the expectations in (1.3)

are defined). In fact, an example based upon Figure I is easily constructcL.:

Let the distribution of Z assign mass 1/3 to each of the points in Figure I at

which 2k = 0, and let the distribution of Z' assign mass 1/3 to each of the

three points in Figure I at which k is explicitly defined. It is easily

checked that (1.1) holds but E.(Z) < Ek(Z).

Thus if Z and Z' are bivariate random variables with equal marginal

distributions and with bivariate distribution functions satisfying H H (i.e.

if (1.1) holds), then in general this does not imply that (1.3) holds for all

functions k and 2k satisfying (1.15). We now show that this implication is true

in certain special cases, using the variation of the surrogate approach e

involving condition (CO), which is described in the introduction. We begin

with the normal case.
if (11) hlds),thenin geeralthis oes ot imly tat .3)hod fr l
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Theorem 3.1. Suppose Z and Z' are bivariate normal random variables with

copnyron means and variances and with correlation coefficients p and p'

sattsfying the inequality p ; p'. Then (1.3) holds for every pair of functions

k and Z which satisfy (1.15) and for which the expectations appearing theroin

make sense.

Proof. Let (S,T,U) be normally distributed with a zero mean vector and the

covariance matrix

1 p [p'-p)

= p 1 (p'-p)
(S,T,U)

(p'-p) (p'-p) 2(p-p')

Define

XI=0x +YxaS , YI=y+y T , X2=px+x (S+U) , Y2= y+oy(T+U)

where (pxpy) is the common mean vector, and a 2 and oy are the common variances
x y X y

of 1i and H'. It is easily checked that (Xl,Y 1) and (X2,Y2,) have distribution

function H and that (Xl,Y 2) and (X2,Y1) have distribution function H'.

Moreover (X2-X1)(Y2-Y1) = oaxyU 2 > 0. Thus condition (CO) is satisfied and

(1.3) follows from (1.15), via (1.16) as discussed in the introduction,

Thus when Z and Z' are as in Theorem 3.1, and F2 is the class of all

pairs of functions £ and k satisfying (1.15) and for which the expectations in

(1.3) are defined, we have p 2! p' ---> (1.3). On the other hand we clearly have

(1.3) -> (1.2) and, as was already mentioned, (1.2) <-> (1.1) which in this

case is equivalent to H > H'. Thus p > p' => i >- H', which is a special case

of an n-dimensional result due to Slepian [9), and which implies p ? p' <=> H

... . ,' ' _. 1 ... . . .. L , , , - " . . . -.. . ., . . .. - -- , q " - 1._
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It then follows that when Z and Z' are bivariate normal variables with common

means and variances then

p p' < > H ? H' <---> (1.2) <1> (1.3)

Theorem 3.1 can be extended to higher dimensions and from normal to

elliptically contoured distributions. If Z is an n-dimensional random (row)

vector and, for some n (row) vector p and some nxn nonnegative definite matrix

E, the characteristic function Z_,(s) of Z-p is a function of the quadratic

form s ~s,  Z_ (s) = O(sEs ), we say that Z has an elliptically contoured

distribution with parameters p, E and c, and we write Z - EC n When

(u) = exp(-u/2), ECn(pZq) is the normal distribution Nn (-,E). The location

and scale parameters p and E can be any n vector and any nxn nonnegative

definite matrix, while the class 4k of admissible functions depends on the

rank k of E, r() = k, and consists of all functions of the form

4(u) = f k(r 2 u)dF(r) , u 0
[0, o )

for some distribution function F on [0,-), where kk(IIs I2)' s , k,
~l~sI), s IR ,is the

characteristic function of the uniform distribution on the surface of the unit

k
sphere of JR . This follows from a theorem of Schoenberg [8] and is discussed

in [1] where the following useful stochastic representation is also introduced.

Let Z = At A be a rank factorization of E, i.e. A is kxn and r(E) = k = r(A).

Then Z has the "canonical" stochastic representation

Z d (k)Z + RU A

where the equality is in distribution, R is a nonnegative random variable (with

distribution F), U(k) is a k-dimensional random vector uniformly distributed on

L. .' - .
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k (k)
the surface of the unit sphere in R 

, and R and U are independent.

Theorem 3.2. Suppose that Z - EC 2(jYPO ) and Z' EC 2 (,T', ) where

o1 PO 2  1  o 2

1 i 2  o2  1 0 L 2  02

and p P'. Then (1.3) holds for every pair of functions k and 9 which satisf-i

(1.15) and for which the expectations appearing in (1.3) are defined.

Proof. If p = 1 and pl = -1 we have

zdq+R(1)A ,l z' R(1)A1

where YI(0i,102) All= (oI,'-2). Since R and UMI  are independent, in order to

show E9,(Z) >! Ek(Z') it suffices to show

EZ( 1+rU (1) A1) 2! Ek(p+rU (1) J ) , r > 0. .)

Since k(.) and 9,(-) satisfy (1.15), so do k(p+r.) and k(j +r-) for ever), -. and

r - 0. Thus it suffices to show (3.1) when i = 0 and r = 1, i.e. it suffices

to show Ei(U(1A1 ) > Ek(U(1)AI), which is written as

1 >(_ol, + 1 + 1,O2) 1
- 2  k(-Gli-o 2 ) + 12k(Ol,-O 2 2 2 )

and follows from (1.15).

Now assume that at least one of p,o' differs from I in absolute value.

Putting

.... ... .. • r . . . . -2
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A = 10 c2 sin a and A' = 0 1 02

a0I sin a 02 COS C% 0 1 sin (I' COS

where ai and al', -T - v a < I, are defined by = sin 2c, and o' = sin 2x, we

have F = At A and Y' = A' tA'. When -1 -,' p p < 1 then both , are full

rank and r(A) = 2 = r(A') so that =At A, '=A' are rank factorizations of

E,E'. It then follows that

dj+RU (2)A, Z'dp+RU(2)A' (3.2)

When one, but not both, of p,p' equals 1 in absolute value, say -1 < 0' < = 1,
then Z' d a E2(rt 2 t

= p+ RU(2A ' and Ee s  l(sE's) f 2 (r sE's )dF(r)
[0, C")

where F is a distribution of R. Since

ieS (Z- p)t 2

Ee =(st) = f Q2 (r 2Ss t)dF(r)
[0,) )

it is easily checked that Z = + RU(2)A. Hence (3.2) holds provided at least

one of p,p) differs from 1 in absolute value. Because of the independence of

R, (  arguing as before, it suffices to show that Ek(U(2)A) > Ek(U( 2 )A').

This will be done by defining a random vector (XI,X 2,Y1,Y2) which satisfies

condition (CO); (Xl,1Y) and (X2,Y2) will be distributed as U (2)A, (XlY 2) and

(X2,Y1 ) will be distributed as U (2)A', and the product (X2 -XI)(Y 2-Y1) will be

nonnegative.

The random vector U(2 ) can be taken to be (sin O,cos e), where 8 is

uniformly distributed on any interval of length 2w. Then

U( 2)A - (a1 sin(0+a) , a2 cos(-ci)) , U(2 )A' = (a1 sin(e+a) 02 cos(8-a'))

(3.3)

...." .. ... ....-" -... ... .1
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Let

S=sin(+ca) , T=cos(O-a) , V=sin(w'-O)

and define

X1 =aS , X2= 1 (S+2 cos(a+a')V) , Y1=o2T , Y2=a2 (T+2 sin(a-W')V)

Since 2 sin(a-a')cos(+ a') = sin 2o, - sin 2a' = p - p' > 0, it follows that

(X2-X1)(Y2-Y1) 0 0. By further trigonometric manipulations, one obtains

S + 2 cos(a+c')V = sin((20'-0)+t) , T+2 sin(Q-at')V = cos((2a'-O)-a)

Since 2'-0 is uniformly distributed on an interval of length 2Tr, (X2,Y2), as
(2)

well as (XI,YI), is distributed as U 2)A. Similarly, one finds that (XI,Y 2 )

and (X2,Y1) are distributed as U (2)A'. This completes the proof.

Remark. Implicit in this proof is the use of a fact about any two ellipses

which are inscribed in the same rectangle. Each point on one of the ellipses

is the vertex of a rectangle whose opposite vertex is on the same ellipse and

whose adjacent vertices are on the other ellipse. (In fact there are two such

rectangles.) Whether this is a known fact from projective geometry is unknown

to the authors. (In the present context, the two ellipses are the ranges of

the random vectors U (2) A and U(2)A'.)

When k and . are functions of x j y.

Suppose k and k, which are defined for (x,y) c WR, are functions of the

sum x+y. For convenience, we shall write them as k(x+y) and i(x+y). In terms

of

T F :
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U -- (x +X +y +y), v -- (x2-x +y2- 1  , w+

the inequalities (1.15) become

V9(u+v) + £k(u-v) >,k(u+w) + k(u-w) , u c IR0 < W v ~(3.4)

When k = Z, this condition is equivalent to convexity. Thus k(x+y) is

quasi-monotone (as a function of (x,y)) if and only if it is a convex function

(of the single variable t =x + y).

In general, k can be no larger than k* defined by

k*(u) I inf{Z(u+v) + Z(u-v)} (3.5)

(Set w =0 in (3.4).) Assuming that k* is finite and measurable, k can equal

k* if and only if

inf fv,(u+w+ct) + Z(u+w-u) I+ inf {Z(u-w+x) + 9 (u-w-(x) I - 2f{Z(u+v) + (u-v)
KX 0 a O

for all u c R, 0 < w v < ~.This condition is met if for each u c R~, w u-

and v 2: w, there exists an a 0 such that

4f U(w+a) + f U(w-a) ! 2f u v) ,(3.6)

where f uis the even function defined by f u v) = Z(u+v) + Z.(u-v). A suitable

value for a can be obtained if fuis nondecreasing (set a = 0), nonincreasing

(set a = v +i w), or concave (set a = v) on [0,-). Summarizing, if k* is finite

and measurable, and if for each u, Z(u+v)+Z(u-v) is a nondecreasing,

nonincreasing or concave function of v on [0,oo), then k* is a suitable and

maximal choice for k. Under these conditions on k* and Z, any measurable

function k g k* satisfies (3.4).
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The following are examples of functions V which meet these conditions:

(i) If k is convex (as a function of the single variable t = x + y), then

9(u+v)+Z(u-v) is a nondecreasing function of v on [0,-) and k* k.

(ii) If 9 is a symmetric function with respect to some point (uo O ) in IR"

(i.e., if Z(u0 +v) + Z(u0 -v) = 2Z0, v 0), and 9. is concave on [u

then k(u+v)+Z(u-v) is a nonincreasing function of v > 0 for u u0 and is

a nondecreasing function of v 0 for u ! uO . It follows that k*

on (--,u 0 ].

The values of k* on (u0 ,00) must be evaluated from (3.5) in each specific

case, and it must be checked whether k* is finite and measurable. For

instance, if Z is the distribution function of a normal random variable with

2 1
mean P and variance a , then k* = Z on (-o ,ji] and k* = - on [i,-); hence k*

2

is a maximal choice for k. (This is another example of functions k and

satisfying (1.15) which can not be separated by a quasi-monotone function m,

i.e., there is no function m which satisfies (1.14) and k ! m 5 R. The

details are left to the reader.)

When the supports of X+Y and X'+Y' are not the entire real line, the

ranges of u, v and w in (3.6) can be reduced. Thus k and Z will have to

satisfy fewer restrictions, and a wider variety of suitable k,x pairs will be

permitted. (The same can be said when k and Z are general functions on R and

the supports of (X,Y) and (X',Y') are proper subsets of R2 )

When k and 2 are functions of x-y (instead of x+y) the analogue of (3.4)

is

Z(u+w) + Z(u-w) 2 k(u+v) + k(u-v), u E R, 0 s w v< . (3.7;

(the definitions of u, v and w must be modified appropriately) and the analysiS

of (3.7) is similar to that given for (3.4).

- I
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A generalization to higher dimensions.

A higher dimensional version of Theorem 3.2 can be proven by reducing

the dimension to 2 through conditioning.

Theorem 3.3. Suppose that Z EC(n~i,Z,0) and Z' EC (,Y,)where

(,. Z,(~ jj ' j. Then (1.3) holds for an,? pair

functions k and Z of n variables for which the expectations appearing -in (1.3)

mak.3 sense and which satisfy (1.15) as functions of any ti~wo of the n varic;Zhlco

for all fixed values of the remaining n-2 variables.

Proof. According to the argument in the first paragraph of the proof of

Theorem 5.1 in [3], it suffices to prove the result in the case where 112 c1
and a. = o. for all (i,j) ;r (1,2),(2,1). Write

Z=ljp 13 1

where Z,,p are two-dimensional and Z 11 is 2x2. It is easily seen via the

characteristic function that

(Y1 ,Y) (Z1-11, Z2 - 1f+- EC(I 02 J

where E+is the seif-adjoint generalized inverse of Z2 and Z* Z +1 -- J

Now let RU(n R(UJu 2) EC n(0,1,0~), where U 1is two-dimensional. Them

(Y1Y) d (lf [Z*a 0 R(U E 2,UE -

and
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Z (Z1 ,Z 2 ) d E+ 2 EU + E, +RJ Z'*12 ,2 2E22(22'12+1 01 2 2 2)

Since U(n ) is uniformly distributed on the surface of the n-dimensional unit

sphere, (Ul11H2=u2) d [l-u2ut] U(2) where [a]+ = max(a,O). (See for instance

Lemma 3 in [1].) Since R and V are independent, it follows that for all r 0

and u2)

((Zl ' z 2R=r , U2=u) (2) ,+r*U(2)., , +ru ).

where

Er* rul2-u2u2  - -U2722 +222 12 ' .1 - '12 ,2 .

Since Z' = ,Z' = (Zf,Z9) satisfies (3.8) with ;i*1 = u*, r*' r* and

•*1sho lIn order to verify E(Z) _ Ek(Z') it thus suffices to
show that for all r ! 0 and u2

2) z 2+ru2 X 2) Ek(p*+r*U( 2 ) ,,. + ru I7

and this follows from Theorem 3.2.

Remarks. 1. By letting k and Z in Theorem 3.3 be indicator functions uf

(-, z], z E IIR n , one obtains the inequality H H' where H and H' are the

distribution functions of Z and Z' respectively. For normal distributions this

inequality is a well-known result due to Slpian [9], and for elliptically

contoured distributions it has been obtained by Das Gupta et al. [3] under the

assumptions that the matr.ces, are invertible and that densities exist.

I
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2. lindcr the assumptions of Thcorein 3.3 it is also true that

n nP(- A) P" 11 for every set of the form [uc- n , u 7 r P . Thus all

restit -in >ect ion are concerned with random vectors that are

tu hit . ',,r,tcr,.d in the sense described in the beginning of this section.

(h, obserati n may point the way to extensions that are not confined to

liuciidean- t)ace-valiued random variables.)

3. he approach used in proving Theorem 3.3 can be used to extend

the theorem to random vectors Z and Z' with more general distributions than

elliptically contoured. For instance the theorem holds for random variables

d (k) (k)
with distributions Z = + U AR and Z = + U A I R, where R is any random

matrix with nonnegative components which is independent of U(k)

4. Necessary and sufficient conditions for (1.3)

It is possible to characterize the bivariate distribution functions 1i an2

H' which satisfy condition (CO). This is accomplished by a straightforward

generalization of the proof given by Sudakov [11] of a theorem by Strassen ;ifl.

Cast in our context this slight extension of Strassen's theorem says that ,

is equivalent to the following condition (Cl):

(Cl) P(ZEA) -> P(Z'cA') , (A,A') E A2 = {(A,A'): IA 1At satisfy (1.15)

Thus if (C3) denotes the following,

(C3) EM(Z) > Ek(Z') , (k,k) E F2, the class of all functions k,k which

satisfy (1.1S) and for which the expectations are

defined

we have that conditions (CO), (Cl) and (C3) are equivalent. The implications

(CO) => (C3) and (C3) -> (Cl) are immediate, and the nontrivial ones are

(Cl) => (C) (CO).

L
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Two indicator functions k = 1A and Z = 1B satisfy (1.15) if and only if

2
A cB and for every rectangular set of four points in IR

d c

ab

the number of points of (a,c} in B is larger than or equal to the number of

points of {b,d} in A. By choosing various such pairs of sets A and B one finds

that the inequality in (C3) requires H and H' to have common marginal

distributions and to satisfy H H'. In the case of normal or elliptically

contoured distributions H and H', these two properties imply (C3) as shown in

Theorems 3.1 and 3.2. The case of more general distributions requires further

investigation.

Because of the equivalence of conditions (CO), (Cl) and (C3), our goal,

i.e. condition (C3), can be achieved by establishing either condition (CO) or

(Cl). In Theorems 3.1 and 3.2 condition (CO) is established. Even though

condition (Cl) is very natural and satisfactory, especially in its relationship

with (C3), it is unfortunately very difficult to verify, and we have failed to

achieve this for any distributions H and H'.

The equivalence of (CO), (CI) and (C3) is a special case of a more

general situation which provides new ways of obtaining inequalities of the type

(1.3), and of showing the existence of joint distributions with fixed support

and with certain marginals fixed. To illustrate the power and novelty of this

approach let us consider a few examples.

4
Let F be a closed subset of R , and consider an inequality between

functions k and k of the following type (simpler than (1.15))

~0~* -
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(CF) Z.(xlYl) _ k(x 2 ,Y 2 ) , (Xlx 2 ,ylY 2) e F

and the following conditions which depend on F.

(COF) There exists a random vector (XI,X 2 ,YI,Y2 ) whose values are in the set

F and which is such that the bivariate marginal distributions of (XI,Y I)

and (X2 ,Y2) are H and H' respectively.

(ClF) P(ZEA) - P(Z',EA') , (A,A') e A2 = {(A,A'): 1A 1A, satisfy (CF)}

(C3F) EZ(Z) - Ek(Z') , (2,k) E F2, the class of all functions Z,k which

satisfy (CF) and for which the expectations are

defined.

By Strassen's theorem, (COF) and (CIF) are equivalent. Also, if (COF) holds we

have

Z(XI,YI) 1 k(X 2 ,Y 2 ) a.s.

for all pairs k and Z. satisfying (CF), and by taking expectations (C3F) follows.

Thus (COF) => (C3F) and clearly (C3F) => (ClF). Hence conditions (COF), (CIF)

and (C3F) are equivalent. By choosing

F = {(xl,x 2 ,yly 2 ): xlx 2 , yY 2 }

(CF) becomes £(xlyl) _ kx 2 ,Y2), xI > x2 , yl -> Y2; (ClF) is equivalent to

H(1) -> H'(I) for all increasing sets I

and the result includes Theorem l(i), (iv), and (vi) of Kamae, Krengel and

O'Brien [4]. Of course, any one or both of the inequalities in the

definition of F could be reversed with corresponding results. If we choose

. . . . . . . . ..- -
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F = {(xix 2 ,yly 2 ): max(jxlf,jylj) max(1x 2 1y 2?)}

then (CIF) becomes equivalent to

H(A) ; H'(A) for all squares A = {(x,y): jxl!a, fyf!aj , (4.1)

and thus (4.1), (COF) and (C3F) are equivalent. Tlien H and HI are normal with

zero means, common variances and correlation coefficients p and p' satisfying

Ijp Ip' , then (4.1) is satisfied and thus (COF) and (C3F) hold, both new

results. The same is true for absolutely continuous elliptically contoured

distributions EC2(O,E,4) and EC2 (O,E',4), where EE' are as in Theorem 3.2 with

1p ? jp'1; in this case inequality (4.1) follows from Theorem 2.1 of [3].

For not necessarily absolutely continuous elliptically contoured

distributions EC2 (O,Z,4) and EC2 (Oj', ), where Z,Z' are as in Theorem 3.1 with

KIo I'I, we now give a simple proof of (C3F), and thus also of (4.1), in the

case where the common variances of EE' are equal. The approach is through a

construction similar to that of Theorem 3.2 and thus the result is obtained

without using Strassen's theorem. Also the result is slightly stronger than

that in the previous paragraph in that the elliptically contoured distributions

are not required to be absolutely continuous. Even though we are assuming for

simplicity of the construction that the common variances of Z,7' are equal, no

doubt a similar, but somewhat more involved, construction would be feasible

when the variances are not equal.

Theorem 4.1. Suppose that Z - EC2(O,Z,O) and Z' - EC2 (O,Z',O) where

and 02 2' , X = ay a (4.1)
PC 2 Y2P'f 2  a 2

and 1pI : IP'1. Then (O3F) hoZds, as eZ as (4.1).
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Proof. As in the proof of Theorem 3.2 it suffices to show Ek(U ()A) -- Ek(U'(2)A' ,

(here j 0). This will be done by defining a random vector (XI,X 2,Y1,Y2 )

which satisfies condition (COF); i.e. (XI,YI) 1 U(2)A, (X2,Y2) d U,(2)A', and

max(IXIl, IYI I) smax( IX21, IY21)"

The random vectors U(2) and U' can he taken to be (cos 03, sin 2) and

(cos 0', sin 0'), where 0 and 0' are uniformly distributed on intervals of

length 21. Then we can take

i(XIYI1) =o(cosO(0- ) sin(80)) (X 2, Y2 )=G(cos(0'-U,) ,sin(o'+r,'))

where sin 2a=p, sin 2c '=p' -< T<a, c.I < IT We will now determine the joint

distribution of (0,0') so that the marginals will be uniform on intervals of

length 21T and

max{ cos(0-%) , fsin(O+a ) m nax{ cos(e'- ) , sin(0'1') t1 (4.2)

We have

lcos(6-(x') 2! lsin(O+a') <> cos 2(8-a) -cos 2(0+at')

<=> cos 20' cos 2c' -> 0 <-> cos 20' 2! 0

and similarly

Icos(O-a)l -< cos(O'-a,') <=> sin(O+e'-y)sin(0-O'-$) > 0

Isin(8+a)I : Icos(O'-ac') <=> cos(+0'+ )cos(0-0'+y) > 0

Icos(e-a) < Isin(0'+a')[ <=> cos(e+0'-$)cos(e-e'-y) _< 0

Isin(0+a)I < Isin(0'+a') <=> sin(6+0'+y)sin(e-0'+8) < 0

where 8 = a - a', y = a + a' (0 5 a s , 0 s y 5 1). Thus (4.2) is equivalent

to

... . . . . .. .L . . . ± -
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cos 26' 0O (cos 2e' !<0

j sin(6+0'-y)sin(0-0'-3) > 0 or cos(6+'-3)cos(0-O'-y) -< . (4.3)

cos(0+0'i+P)cos(O-0'+Y) e 0 sin(6+0'+y)sin(O-01+) !<

The two sets of inequalities in (4.3) determine the set where the support of

the joint distribution of (6,6') must lie.
71

Let us first consider the case where 0 :5 p' _< p, i.e. 0 _ a' < a Z4.

When a = a', i.e. = 0, we can take 0 = 0'. In the general case, > 0, we

can take a to be the following function of 6':

6 = 6' + for - <6' < - , 6 <41 4

6' + - for - < ' , ST _ 5T

(4.4)

fo f<3Tr 5Tr 7T= 6' - 8 for + <_ 6' < T -, .2TL 6<6 e,< T ~ 44

-6' - + for T- < 1 + , - < < +! +

72 _T -~,~ 4i

7,
Since the relationship between 6 and 6' in -,-4) is one-to-one and piecewise

T 7 r ,
linear with slope 1, if 0' is uniformly distributed on [-T--) then so is 6.

Moreover the pairs (6,6') defined by (4.4) satisfy conditions (4.3) and we now

check this for -1 < 0' < -1, in which case cos 20' - 0 (the remaining cases
4- 4'71 i'T1O

being similar). When -4 < 6'< -6, we have 6 = + 6 and thus

sin(O+6'-y)sin(6-6'-a)=O>O, cos(O+e'+6)cos(e-e,+y)=cos 26 cos 2a 20

WhenE- s 6' < we have e = 6' 6 - 2 and thus

sin(0+0'-y)sin(O-6'-B) = sin(26'+6-j-y)sin(-j) = cos 2 (0'-a') 0

2
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since 0 0- T and

cos(0+0'+F)cos(o-o'+y) = cos(20+ )cos(+y--) -sin 20 sin 2u. 0

since -- < 0 < ~.

The remaining cases are treated similarly, and Figure II shows the graph

of 0 = f(0') which achieves the desired properties. The graph is plotted for

-T <&' < IT and for- <0 < -the graph is obtained by shifting the plotted
T - 44 4

graph by (IT,iT).

If we choose

F = {(xl,x 2 ,yl,y2: Ix11 x2l or lyll Iy21}

then (CIF) becomes equivalent to

H(Ac) > H )(A), i.e. H(A) ! H'(A), for all rectangles A = ((x,y): jxI!a ,yj bJ

(4.5)

and the corresponding conditions (COF), (C3F) and (4.5) are equivalent. When

H and H' are absolutely continuous elliptically contoured distributions

EC2(O,EX) and EC2(0,E',O), where E, are as in Theorem 3.2 with W0I I 'P,

then (4.5) is Theorem 2.1 of [3], and thus (COF) and (C3F) both hold.

If we choose

F = {(XlX 2,yly 2): (x1,y1) >m (x2,y2)}

where for two-dimensional vectors (xl,Yl) !m (x2,y2) means max(x ,yl) max(x2,y2)

and x+ Yl = x2 + Y2, then (ClF) becomes equivalent to

It
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H(A) 11 t'(A) for all measurable Schur-convex sets A (4.6)

(A is Schur-convex if Z E A and Z' :m Z imply ZI_ A) and the corresponding

conditions (COF), (C3F) and (4.6) are equivalent. This is Theorem 2.2 in [6].

All the examples described above have obvious n-dimensional analogues.

IM

*1{
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